Randomization
This page describes functions contained in the randomization
module used to generate of randomized controls of connectomes.
ER_model(adj, threads=8, seed=(None, None))
Creates an Erdos Renyi digraph.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
adj |
sparse matrix or 2d-array
|
Adjacency matrix |
required |
threads |
int
|
Number of parallel threads to be used to generate model |
8
|
seed |
pair of ints
|
Random seed to be used, if none is provided a seed is randomly selected |
(None, None)
|
Returns:
Type | Description |
---|---|
coo matrix
|
Matrix of the generated control |
Raises:
Type | Description |
---|---|
AssertionError
|
If adj is not square |
Source code in src/connalysis/randomization/randomization.py
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
|
ER_shuffle(adj, neuron_properties=[])
Creates an ER control by shuffling entries away from the diagonal in adj
TODO: Re-implement this using only sparse matrices
Source code in src/connalysis/randomization/randomization.py
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 |
|
add_connections(adj, nc, seed=0, sparse_mode=True, max_iter=30)
Function add connections at random
Parameters:
Name | Type | Description | Default |
---|---|---|---|
adj |
matrix
|
Adjacency matrix of a directed network |
required |
nc |
Number of connections to be added
|
|
required |
seed |
int
|
Random seed to be used to selecte edges that will become reciprocal |
0
|
sparse_mode |
If sparse_mode is |
True
|
Returns:
Type | Description |
---|---|
bool matrix
|
Digraph with nc more edges than adj |
Source code in src/connalysis/randomization/randomization.py
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 |
|
add_rc_connections(adj, n_rc, seed=0)
Function to turn a fixed amount of unidirectional connections of adj into reciprocal connections.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
adj |
sparse matrix
|
Adjacency matrix of a directed network |
required |
n_rc |
Number of reciprocal connections to be added
|
|
required |
seed |
int
|
Random seed to be used to selecte edges that will become reciprocal |
0
|
Returns:
Type | Description |
---|---|
matrix
|
Digraph with n_rc more edges than adj, all of which form reciprocal connections |
Source code in src/connalysis/randomization/randomization.py
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 |
|
add_rc_connections_skeleta(adj, factors, dimensions=None, skeleta=None, threads=8, seed=0, return_skeleta=False)
Function to add reciprocal connections at random to adj on the skeleta of maximal simplices of adj
Parameters:
Name | Type | Description | Default |
---|---|---|---|
adj |
sparse matrix
|
Adjacency matrix of a directed network |
required |
factors |
Factor by which to multiply the reciprocal connections on the |
required | |
dimensions |
The dimensions at which to increase the number of reciprocal connections. If |
None
|
|
skeleta |
Dictionary with keys f'dimension_{dim}' for dim in dimensions and values binary sparse sub-matrices of adj on which reciprocal connections will be added. |
None
|
|
threads |
Number of threads on which to parallelize the skeleta computation if not pre-computed |
8
|
|
seed |
int
|
Random seed to be used to selecte edges that will become reciprocal |
0
|
Returns:
Type | Description |
---|---|
(csc_matrix, dict)
|
Digraph with add reciprocal connections If return_skeleta=True it also returns the skeleta of maximal simplices of adj in the dimensions selected |
Source code in src/connalysis/randomization/randomization.py
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 |
|
adjusted_ER(adj, seed=None)
Function to generate an Erdos Renyi model with adjusted bidirectional connections.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
adj |
csc_matrix
|
Adjacency matrix of a directed network. |
required |
seed |
int
|
Random seed to be used |
None
|
Returns:
Type | Description |
---|---|
csc_matrix
|
Erdos Renyi shuffled control with additional reciprocal connections added at random to match the number of reciprocal connections of the original matrix. |
See Also
underlying_model : Function which returns a digraph with the same underlying undirected graph and same number of reciprocal connections
bishuffled_model : Function which returns a digraph with shuffled reciprocal connections
Source code in src/connalysis/randomization/randomization.py
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
|
bishuffled_model(adj, seed=None)
Function to generate a digraph with shuffled reciprocal connections
Parameters:
Name | Type | Description | Default |
---|---|---|---|
adj |
csc_matrix
|
Adjacency matrix of a directed network. |
required |
seed |
int
|
Random seed to be used |
None
|
Returns:
Type | Description |
---|---|
csc_matrix
|
Digraph with shuffled reciprocal connections |
See Also
adjusted_ER : Function to generate an Erdos Renyi model with adjusted bidirectional connections
underlying_model : Function which returns a digraph with the same underlying undirected graph and same number of reciprocal connections
Source code in src/connalysis/randomization/randomization.py
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 |
|
configuration_model(M, seed=None)
Function to generate the configuration control model, obtained by shuffling the row and column of coo format independently, to create new coo matrix, then removing any multiple edges and loops.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
adj |
coo - matrix
|
Adjacency matrix of a directed network. |
required |
seed |
int
|
Random seed to be used |
None
|
Returns:
Type | Description |
---|---|
csr matrix
|
Configuration model control of adj |
See Also
run_SBM : Function which runs the stochastic block model
run_DD2 : Function which runs the 2nd distance dependent model
Source code in src/connalysis/randomization/randomization.py
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
|
run_DD2(n, a, b, xyz, threads=8, seed=(None, None))
Creates a random digraph using the 2nd-order probability model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n |
int
|
Number of vertices |
required |
a |
float
|
Coefficient of probability function |
required |
b |
float
|
Absolute value of power of exponent in probability function |
required |
xyz |
(n,3)-numpy array of floats
|
Co-ordinates of vertices in \(\mathbb{R}^3\) |
required |
threads |
int
|
Number of parallel threads to be used |
8
|
seed |
pair of ints
|
Random seed to be used, if none is provided a seed is randomly selected |
(None, None)
|
Returns:
Type | Description |
---|---|
coo matrix
|
Matrix of the generated control |
See Also
conn_prob_2nd_order_model :
The modelling function from which the parameters a
and b
can be obtained.
Source code in src/connalysis/randomization/randomization.py
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
|
run_DD2_block(n, probs, blocks, xyz, threads, seed=(None, None))
Creates a random digraph using a combination of the stochastic block model and the 2nd order distance dependent model. Such that the probability of an edge is given by the distance dependent equation, but the parameters of that equation vary depending on the block of the source of the edge and block of the target.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n |
int
|
Number of vertices |
required |
probs |
numpy array of floats
|
shape=(m,m,2) where m is the number of blocks. For source vertex i and target vertex j probs[i][j][0] is the coefficient of the distance dependent equation (value a) and probs[i][j][0] is the absolute value of power of exponent in the distance dependent equation (value b) |
required |
blocks |
numpy array of ints
|
shape=(n,). The i'th entry is which block vertex i belongs to. |
required |
xyz |
(n,3)-numpy array of floats
|
Co-ordinates of vertices in \(\mathbb{R}^3\) |
required |
threads |
int
|
Number of parallel threads to be used |
required |
seed |
pair of ints
|
Random seed to be used, if none is provided a seed is randomly selected |
(None, None)
|
Returns:
Type | Description |
---|---|
coo matrix
|
Matrix of the generated control |
Raises:
Type | Description |
---|---|
TypeError
|
If blocks contains non-integers |
See Also
run_DD2 : Function which runs the 2nd distance dependent model
run_SBM : Function which runs the stochastic block model
run_DD2_block_pre : Similar function that only accounts for the block of the source vertex
Source code in src/connalysis/randomization/randomization.py
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
|
run_DD2_block_pre(n, probs, blocks, xyz, threads=8, seed=(None, None))
Creates a random digraph using a combination of the stochastic block model and the 2nd order distance dependent model. Such that the probability of an edge is given by the distance dependent equation, but the parameters of that equation vary depending on the block of the source of the edge.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n |
int
|
Number of vertices |
required |
probs |
numpy array of floats
|
shape=(m,2) where m is the number of blocks. probs[i][0] is the coefficient of the distance dependent equation (value a) for source vertex i and probs[i][0] is the absolute value of power of exponent in the distance dependent equation (value b) |
required |
blocks |
numpy array of ints
|
shape=(n,). The i'th entry is which block vertex i belongs to. |
required |
xyz |
(n,3)-numpy array of floats
|
Co-ordinates of vertices in \(\mathbb{R}^3\) |
required |
threads |
int
|
Number of parallel threads to be used |
8
|
seed |
pair of ints
|
Random seed to be used, if none is provided a seed is randomly selected |
(None, None)
|
Returns:
Type | Description |
---|---|
coo matrix
|
Matrix of the generated control |
Raises:
Type | Description |
---|---|
TypeError
|
If blocks contains non-integers |
See Also
run_SBM: Function which runs the stochastic block model
run_DD2 : Function which runs the 2nd distance dependent model
run_DD2_block : Similar function that also accounts for the block of the target vertex
Source code in src/connalysis/randomization/randomization.py
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
|
run_DD2_model(adj, node_properties, model_params_dd2=None, coord_names=['x', 'y', 'z'], threads=8, return_params=False, **config_dict)
Wrapper for fitting a model and generating a random control graph based on 2nd order distance dependence model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
adj |
sparse matrix or 2d-array
|
Adjacency matrix. If model_params_dd2 have already been computed, one can pass an empty matrix of the right size. |
required |
node_properties |
DataFrame
|
DataFrame with information on the vertices of adj. It must have columns corresponding to the names of the coord_names to be used for distance computation (Default: ['x', 'y', 'z']). |
required |
model_params_dd2 |
DataFrame
|
Optional input of pre-computed model parameters as data frame with rows corresponding to seeds of model estimation (single row if subsampling is not used) and columns 'exp_model_scale' and 'exp_model_exponent' for the model parameters. See modelling.conn_prob_2nd_order_model for details. |
None
|
coord_names |
list
|
Names of the coordinates (corresponding to columns in neuron properties table) based on which to compute Euclidean distance. Default: ['x', 'y', 'z'] |
['x', 'y', 'z']
|
threads |
int
|
Number of parallel threads to be used. |
8
|
return_params |
bool
|
If True, returns model_params_dd2 in addition to the generated control. |
False
|
config_dict |
dict
|
Dictionary with 2nd order model building settings. See modelling.conn_prob_2nd_order_model for details. |
{}
|
Returns:
Type | Description |
---|---|
coo_matrix
|
Matrix of the generated control |
model_params_dd2
|
pandas.DataFrame with model parameters (optional; if return_params is True) |
See Also
conn_prob_2nd_order_model : The modelling function from which model_params_dd2 can be obtained.
Source code in src/connalysis/randomization/randomization.py
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
|
run_DD3(n, a1, b1, a2, b2, xyz, depths, threads=8, seed=(None, None))
Creates a random digraph using the 2nd-order probability model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n |
int
|
Number of vertices |
required |
a1 |
float
|
Coefficient of probability function for negative depth |
required |
b1 |
float
|
Absolute value of power of exponent in probability function for negative depth |
required |
a2 |
float
|
Coefficient of probability function for positive depth |
required |
b2 |
float
|
Absolute value of power of exponent in probability function for positive depth |
required |
xyz |
(n,3)-numpy array of floats
|
Co-ordinates of vertices in \(\mathbb{R}^3\) |
required |
threads |
int
|
Number of parallel threads to be used |
8
|
seed |
pair of ints
|
Random seed to be used, if none is provided a seed is randomly selected |
(None, None)
|
Returns:
Type | Description |
---|---|
coo matrix
|
Matrix of the generated control |
See Also
conn_prob_3rd_order_model :
The modelling function from which the parameters a1/a2
and b1/b2
can be obtained.
Source code in src/connalysis/randomization/randomization.py
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
|
run_ER(n, p, threads=8, seed=(None, None))
Creates an Erdos Renyi digraph.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n |
int
|
Number of vertices |
required |
p |
float
|
Edge probablity, must satisfy \(0 \le p \le 1\) |
required |
threads |
int
|
Number of parallel threads to be used |
8
|
seed |
pair of ints
|
Random seed to be used, if none is provided a seed is randomly selected |
(None, None)
|
Returns:
Type | Description |
---|---|
coo matrix
|
Matrix of the generated control |
Examples:
Setting n=3 and p=1 gives the complete digraph on 3 vertices:
>>> connalysis.randomization.run_ER(3,1)
{'row': [0, 0, 1, 1, 2, 2], 'col': [1, 2, 0, 2, 0, 1]}
Raises:
Type | Description |
---|---|
AssertionError
|
If p is not between 0 and 1 |
Source code in src/connalysis/randomization/randomization.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
|
run_SBM(n, probs, blocks, threads=8, seed=(None, None))
Creates a random digraph using the stochastic block model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n |
int
|
Number of vertices |
required |
probs |
numpy array of floats
|
shape=(m,m) where m is the number of blocks. probs[i][j] is probability of an edge between block i and block j |
required |
blocks |
numpy array of ints
|
shape=(n,). The i'th entry gives to which block vertex i belongs. |
required |
threads |
int
|
Number of parallel threads to be used |
8
|
seed |
pair of ints
|
Random seed to be used, if none is provided a seed is randomly selected |
(None, None)
|
Returns:
Type | Description |
---|---|
coo matrix
|
Matrix of the generated control |
Examples:
To create an SBM digraph on 4 vertices where the even to odd, or odd to even, vertices connect with high probablity (p=0.9) and the even to evens or odd to odds connect with low probability (p=0.1):
>>> connalysis.randomization.run_SBM(4,np.array([[0.1,0.9],[0.9,0.1]]),np.array([0,1,0,1]))
{'row': [0, 0, 1, 1, 1, 2, 2, 3, 3], 'col': [1, 3, 0, 2, 3, 1, 3, 0, 2]
Raises:
Type | Description |
---|---|
TypeError
|
If blocks contains non-integers |
References
[1] P.W. Holland, K. Laskey, S. Leinhardt, "Stochastic Blockmodels: First Steps", Soc Networks, 5-2, pp. 109-137, 1982
Source code in src/connalysis/randomization/randomization.py
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
|
underlying_model(adj, seed: int = None)
Function to generate a digraph with the same underlying undirected graph as adj and the same number of reciprocal connections
Parameters:
Name | Type | Description | Default |
---|---|---|---|
adj |
csc_matrix
|
Adjacency matrix of a directed network. |
required |
seed |
int
|
Random seed to be used |
None
|
Returns:
Type | Description |
---|---|
csc_matrix
|
Digraph with the same underlying undirected graph as adj and the same number of reciprocal connections |
See Also
adjusted_ER : Function to generate an Erdos Renyi model with adjusted bidirectional connections
bishuffled_model : Function which returns a digraph with shuffled reciprocal connections
Source code in src/connalysis/randomization/randomization.py
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 |
|